Impact of Climate Change on Distribution of Caterpillar Fungus, Ophiocordyceps sinensis in Sikkim Himalaya, India

Arun Chettri, Aditya Pradhan and Dhani Raj Chhetri*
Department of Botany, Sikkim University, 6th Mile, Tadong, Sikkim, 737102- India
*Corresponding Author's E-mail: drchhetri@cus.ac.in

(Received: October 29, 2019; Revised: November 30, 2019; Accepted: December 02, 2019)

Abstract

MaxEnt modelling has been used to predict the present and future distributions of caterpillar fungus, Ophiocordyceps sinensis in Sikkim Himalaya in four future climate change trajectories (viz. RCP 2.6, RCP 4.5, RCP 6.0 and RCP_8.5) for the year 2050. The result predicted an area of $311 \mathrm{~km}^{2}(4.77 \%$ of total area) to be suitable under current climatic condition. Under future climate change scenario the suitable habitat of caterpillar fungus would get drastically reduced (RCP_2.6, RCP_4.5 and RCP_8.5) with a minor expansion (i.e. $\sim 71 \mathrm{~km}^{2}$) in addition to current potential suitable habitat under scenario RCP_6.0. Niche overlap analysis resulted in more than 90 $\%$ niche overlap among current and future distribution of species. The existing protected areas (PAs) accounts for only $0.54 \%\left(\sim 35 \mathrm{~km}^{2}\right)$ of the total area of state of Sikkim and 1.64% of the total area of PAs and shows variability in suitable habitat under climate change scenario. Therefore the establishment of new PAs especially towards Far-East and North-East region of Sikkim could be an alternative measure for the conservation of suitable habitat of caterpillar fungus. Alternatively, trans-boundary conservation programs connecting country like Bhutan in the West, Nepal in the East and Tibet in the North of Sikkim could be a feasible long term alternative plan for conservation of species.

Key words: Niche Modelling, Ophiocordyceps sinensis, Protected Area, Sikkim, Yartsha-gumbu

